当前位置: 首页 » 资讯 » 行业资讯 » 其他电池 » 正文

盘点近期出现的电池技术

放大字体  缩小字体 发布日期:2014-09-16  来源: 电子发烧友网  作者:鑫椤资讯
核心提示:在现代社会,由于环境和技术发展的需要,对电池的要求越来越高,就拿现在的电动车来说,由于电池续航能力的缘故,造成了电动车面对一个不上不下的状况。而在便携式产品里面也出现了同样的情况,能量消耗越来越大,而电池未能得到相应的发展,极大的破坏了用户体验,现在来盘点一下最近出现或者取得进展的 电池技术,以飨读者。
        在现代社会,由于环境和技术发展的需要,对电池的要求越来越高,就拿现在的电动车来说,由于电池续航能力的缘故,造成了电动车面对一个不上不下的状况。而在便携式产品里面也出现了同样的情况,能量消耗越来越大,而电池未能得到相应的发展,极大的破坏了用户体验,现在来盘点一下最近出现或者取得进展的 电池技术,以飨读者。

基于植物的可回收太阳能电池

美国乔治理工学院和普渡大学的研究人员开发出一种基于源自植物天然物质如树木的新型太阳能电池,这种有机太阳能电池所采用的可再生原材料基质,使用后 可被简单地回收。这项研究由乔治理工学院的工程教授Bernard Kippelen领衔,这名教授始终在致力于可持续、可再生太阳能电池技术的协助研究工作。

  


        “太阳能技术有机基片的开发工作一直在持续进行中,也为未来的应用提供了很好的帮助。”Kippelen解释说,“有机太阳能电池应该是可以回收再利 用的,另一方面我们也解决了目前的一个问题,即是减少对矿物燃料的依赖,后者在电池使用寿命结束后无法进行简单的处理。”

        有机太阳能电池基于玻璃与塑料制成,这两者在回收工作上都比较容易。而Kippelen的太阳能电池则由植物细胞膜质纳米晶体构成(CNC),这即是 源自于类似树木之类的植物。这种电池在寿命终结后,回收工作仅需在常温下将它们浸入水中。在数分钟的浸湿后,CNC基质会溶解,从太阳能电池上简单地分离开来。

  

       CNC基片是透明的,本身可透光。虽然2.7%的能源效率相较其他太阳能电池技术的研究还比较低,但其环境效益及简单回收的特性仍是相当吸引人的。未 来,研究人员期望提升这种电池产品的效能。“我们的下一步计划就是将其能源转换效率提升至超过10%,达到用玻璃、塑料制成基片的太阳能电池相同的水 平。”Kippenlen说。

        科学家研制可在黑暗中使用的细菌发电生物电池

        国外媒体报道,用细菌制成的电池很快将会为我们的电子产品提供电能。科学家已经发现,可以把细菌体表蛋白生成的能量收集起来,作为电能。这项重大突破将会导致由细菌产生的清洁电流,或称“生物电池(bio batteries)”诞生。

        该研究成果发表《美国国家科学院院刊》上,它显示,细菌接触到金属或者是矿物质时,它们体内的化学物质就会生成电流,并通过细胞膜流出体外。这意味着 可以把细菌直接“束缚”到电极上,这一发现表明我们又向成功制出高效微生物燃料电池迈 进了一大步。研究人员制成海洋细菌希瓦氏菌的合成版本,他们仅采用了 被认为是这种细菌用来把电子从岩石上转移到体内的蛋白。然后他们把这些蛋白质嵌入到一层层泡囊中,这些是微小的油脂(脂肪)囊,例如组成细菌膜的那些物 质。随后他们对电子在细菌体内的给电子体和体外用来提供矿物质的一块金属之间的传输情况进行检测。

        英国东安格利亚大学的生物学家汤姆-克拉克博士说:“我们知道细菌能转移金属和矿物质里的电子,这种互动主要取决于细菌体表的特殊蛋白。但是 目前我们 还不清楚,这些蛋白是直接还是间接通过环境中一种我们不知道的介质做到这些的。我们的研究显示,这些蛋白质能够直接‘接触’矿物质表面,并产生电流,这表 明细菌可能是依附在金属或者矿物质表面,通过它们的细胞膜传导电流的。事实上这是我们第一次观测到细菌细胞膜的组成成分是如何与不同物质发生互动的,并首 次了解了金属和矿物质在细胞表面发生的互动存在多大差异。这些细菌展现出作为微生物燃料电池的巨大潜能,它们可以通过分解家庭或者农业废料产生电流。”

        克拉克说:“另一种可能性是把这些细菌当作电极表面的微型工厂,电极通过这些蛋白质提供的电能促使细胞内发生化学反应。科学家已经清楚,细菌 会对矿物 质和金属产生影响,但这是首次证实它们可以直接释放电流。在这方面可能有其他种类的细菌比我们当前采用的细菌做得更加出色。未来的生物电池将在没有太阳能 的黑暗环境下特别实用,这是因为它们能在震后的偏远地区或者是海洋深处持续工作。”

        美国太平洋西北国家实验室的生物化学家、研究人员史梁(Liang Shi)说:“我们研制了一种独特系统,这样我们就能模拟细胞内发生的电子转移过程。我们测量的电子转移率快的令人难以置信,这种速度足以支持细菌的呼吸 作用。”更为重要的是,这一发现还有助于我们了解碳是如何在大气层、陆地和海洋之间循环的。史梁说:“当有机物通过化学反应致使铁减少时,会释放出二氧化 碳和水。而把铁作为一个能量源时,细菌会把二氧化碳组合成食物。如果我们了解电子转移,我们就能弄明白细菌是如何控制碳循环的。”

  通过显微镜看到,海洋细菌希瓦氏菌的合成版本与碳电极发生互动

  通过显微镜看到,海洋细菌希瓦氏菌的合成版本与碳电极发生互动

  汤姆-克拉克博士正在东安格利亚大学进行研究的希瓦氏菌

  汤姆-克拉克博士正在东安格利亚大学进行研究的希瓦氏菌

  汤姆-克拉克博士正在东安格利亚大学进行研究的希瓦氏菌

  汤姆-克拉克博士正在东安格利亚大学进行研究的希瓦氏菌

  生物电池可以用来为手机充电器提供电能

  生物电池可以用来为手机充电器提供电能

 
本文导航:
  • (1) 盘点近期出现的电池技术
关于我们:中国化学与物理电源行业协会(China Industrial Association of Power Sources,缩写:CIAPS) 是由电池行业企(事)业单位自愿组成的全国性、行业性、非营利性的社会组织。协会成立于1989年12月,现有550多家会员单位,下设碱性蓄电池与新型化学电源分会、酸性蓄电池分会、锂电池分会、太阳能光伏分会、干电池工作委员会、电源配件分会、移动电源分会、储能应用分会、动力电池应用分会和电池隔膜分会等十个分支机构。
本会专业范围包括:铅酸蓄电池、镉镍蓄电池、氢镍蓄电池、锌锰碱锰电池、锂一次电池、锂离子电池、太阳电池、燃料电池、锌银电池、热电池、超级电容器、温差发电器及其他各种新型电池、电池系统解决方案,以及各类电池用原材料、零配件、生产设备、测试仪器和电池管理系统等。

关键词: 电池技术 新型
[ 资讯搜索 ]  [ 加入收藏 ]  [ 告诉好友 ]  [ 打印本文 ]  [ 关闭窗口 ]

 

 
资讯浏览
 
网站首页