全球范围内已积极开展了提高锂电池的能量密度和电极材料的稳定性的研究,寻找比能量更高、更便宜的正极材料一直是锂电池发展的方向。但是,锂电池中的正极材料局限了锂电池的贮能性能。目前大部分正极材料的电化学容量只有200 mAh/g左右,比如成功商业化的锂离子电池正极材料LiCoO2的电化学容量只有大约140 mAh/g。另外,锂离子在金属正极材料的扩散系数较低,也限制了锂电池的能量输出。
在所有的电池负极材料中金属锂具有最低的密度,最高的理论电压,最好的电子电导,同时其电化学容量达3860 mAh/g,所以近十几年来以金属锂为基础的电池主导了高性能电池的发展。水系电解质锂 空气电池很早就有人研究,电池放电反应方程为:4Li + O2 + 2H2O → 4LiOH(E? =3.35V),放电过程中,金属锂、水和氧气被消耗产生LiOH,由于金属表面生成了一层保护膜而阻碍了腐蚀反应的快速发生。但是在开路状态下和低功率 状态下,金属锂的自放电率相当高,伴随着锂的腐蚀反应: Li + H2O → LiOH + 1/2H2,该反应的发生降低了电池负极的库仑效率,同时也带来了安全上的问题。综合考虑到实用性、成本和安全性,水系锂空气电池非金属空气电池的首选。
有机系锂/空气电池在当前诸多的电池体系中具有最高的能量密度,排除氧气后的能量密度达到惊人的11140 Wh/kg,高出现有电池体系1-2个数量级。本文综述了新型有机系锂空气(氧气)电池的研究进展,并对发展趋势和存在的关键进行了分析和展望。
1 锂空气电池的反应机理
我们现在说的锂/空气电池通常是指有机系电解液锂空气电池(下面我们提到的锂空气电池都是这种有机系列的),这是近几年刚刚发展起来的新型电源体系,目前在国内外从事锂/空气电池研究的很少。1996年,K. M. Abraham等人在 J. Electrochem. Soc.上首次报道了有机系列电解液锂/空气电池[1]。有别于常规的铝/空气电池和锌/空气电池的水系电解液电池体系,锂/空气电池是一种全新的金属/空气电池。相对于使用水系和类水系电解液的传统空气电池而言,使用有机系列电解液或全固态电解质可以获得更高的额定电压(理论值是2.9-3.1 V),同时锂/空气电池的能量密度也远高于其他金属/空气电池,它的工作原理是基于以下两个反应:
图1 锂空气电池工作原理示意图
如图1所示,首先,氧气在多孔空气电极表面还原成O2-或O22-,接着与电解液中的Li+结合生产产物Li2O2或Li2O。由于过氧化锂和氧化锂均不溶解在有机电解液中,因此放电产物只能在有氧负离子或过氧负离子的空气电极上沉积,在阳极过量的情况下,放电的终止是由于放电产物堵塞空气电极孔道所致。