近日,中国科学技术大学教授熊宇杰课题组首次揭示了硅纳米线表面“光解水制氢”的机制,并为其制氢性能的提高提供了新的途径。研究成果发表于《德国应用化学》,并被选为该期刊的热点论文(Hot Paper)。课题组的博士生刘东和李磊磊为共同第一作者。
研究人员巧妙地通过微纳制造技术(即自上而下)和湿化学方法(即自下而上)相结合,具有高度选择性地调控硅纳米线阵列的表面悬键类型和数量。基于系统红外光谱监测,研究团队得以将光催化产氢效率及激子平均寿命与表面悬键联系起来,从而凸显了硅材料表面悬键在光催化应用中的关键作用。另一方面,研究人员发现该过程产生的氢气和氧气的比例远高于常规思维中的化学计量比,因此与传统的光催化产氢机制应该有所差异。江俊教授课题组通过理论模拟,不但证实了预计中表面悬键对于电荷分离的贡献,而且扫描出在不同悬键表面所发生的化学反应势垒。基于该系列发现,研究团队首次拨开了硅材料“光解水制氢”机制的“面纱”,确定了其反应机制。在理解作用机制之后,研究人员开发出了一类基于常规半导体工业技术的表面化学处理方法,为调控位于硅纳米线表面的悬键状态提供了简捷途径,得以理性地调变其光催化制氢性能。
该研究工作提出了新的表面工程思路,为开发高效、自然界丰富的光催化剂铺筑有效道路,并将拓展人们对化学转化中电子运动“微观引擎”的控制能力,对高效催化剂的理性设计具有重要推动作用。
研究工作得到了科技部“973”计划、国家自然科学基金、国家青年千人计划、中科院百人计划、高等学校博士学科点专项科研基金、校重要方向项目培育基金等项目的资助。
硅纳米线表面光催化产氢机制图示